Classifying Descents According to Parity

نویسندگان

  • Sergey Kitaev
  • Jeffrey Remmel
چکیده

In this paper we refine the well-known permutation statistic “descent” by fixing parity of (exactly) one of the descent’s numbers. We provide explicit formulas for the distribution of these (four) new statistics. We use certain differential operators to obtain the formulas. Moreover, we discuss connection of our new statistics to the Genocchi numbers. We also provide bijective proofs of some of our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying Descents According to Equivalence mod k

In [5] the authors refine the well-known permutation statistic “descent” by fixing parity of (exactly) one of the descent’s numbers. In this paper, we generalize the results of [5] by studying descents according to whether the first or the second element in a descent pair is equivalent to k mod k ≥ 2. We provide either an explicit or an inclusion-exclusion type formula for the distribution of t...

متن کامل

6 Classifying Descents According to equivalence mod k

In [5] the authors refine the well-known permutation statistic “descent” by fixing parity of (exactly) one of the descent’s numbers. In this paper, we generalize the results of [5] by studying descents according to whether the first or the second element in a descent pair is equivalent to k mod k ≥ 2. We provide either an explicit or an inclusion-exclusion type formula for the distribution of t...

متن کامل

Counting Descents, Rises, and Levels, with Prescribed First Element, in Words

Recently, Kitaev and Remmel [8] refined the well-known permutation statistic “descent” by fixing parity of one of the descent’s numbers. Results in [8] were extended and generalized in several ways in [7, 9, 10, 11]. In this paper, we shall fix a set partition of the natural numbers N, (N1, . . . ,Nt), and we study the distribution of descents, levels, and rises according to whether the first l...

متن کامل

Noncrossing Trees and Noncrossing Graphs

Abstract. We give a parity reversing involution on noncrossing trees that leads to a combinatorial interpretation of a formula on noncrossing trees and symmetric ternary trees in answer to a problem proposed by Hough. We use the representation of Panholzer and Prodinger for noncrossing trees and find a correspondence between a class of noncrossing trees, called proper noncrossing trees, and the...

متن کامل

Real Zeros and Normal Distribution for Statistics on Stirling Permutations Defined by Gessel and Stanley

We study Stirling permutations defined by Gessel and Stanley in [4]. We prove that their generating function according to the number of descents has real roots only. We use that fact to prove that the distribution of these descents, and other, equidistributed statistics on these objects converge to a normal distribution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006